Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion

2002-03-04
2002-01-0420
Controlled Auto-Ignition (CAI) combustion was realised in a production type 4-stroke 4-cylinder gasoline engine without intake charge heating or increasing compression ratio. The CAI engine operation was achieved using substantially standard components modified only in camshafts to restrict the gas exchange process The engine could be operated with CAI combustion within a range of load (0.5 to 4 bar BMEP) and speed (1000 to 3500 rpm). Significant reductions in both specific fuel consumption and CO emissions were found. The reduction in NOx emission was more than 93% across the whole CAI range. Though unburned hydrocarbons were higher under the CAI engine operation. In order to evaluate the potential of the CAI combustion technology, the European NEDC driving cycle vehicle simulation was carried out for two identical vehicles powered by a SI engine and a CAI/SI hybrid engine, respectively.
Technical Paper

Parametric Study on CAI Combustion in a GDI Engine with an Air-Assisted Injector

2007-04-16
2007-01-0196
Controlled auto-ignition (CAI) combustion and engine performance and emission characteristics have been intensively investigated in a single-cylinder gasoline direct injection (GDI) engine with an air-assisted injector. The CAI combustion was obtained by residual gas trapping. This was achieved by using low-lift short-duration cams and early closing the exhaust valves. Effects of EVC (exhaust valve closure) and IVO (intake valve opening) timings, spark timing, injection timing, coolant temperature, compression ratio, valve lift and duration, on CAI combustion and emissions were investigated experimentally. The results show that the EVC timing, injection timing, compression ratio, valve lift and duration had significant influences on CAI combustion and emissions. Early EVC and injection timing, higher compression ratio and higher valve lift could enhance CAI combustion. IVO timing had minor effect on CAI combustion.
Technical Paper

Optimisation of In-Cylinder Flow for Fuel Stratification in a Three-Valve Twin-Spark-Plug SI Engine

2003-03-03
2003-01-0635
In-cylinder flow was optimised in a three-valve twin-spark-plug SI engine in order to obtain good two-zone fuel fraction stratification in the cylinder by means of tumble flow. First, the in-cylinder flow field of the original intake system was measured by Particle Image Velocimetry (PIV). The results showed that the original intake system did not produce large-scale in-cylinder flow and the velocity value was very low. Therefore, some modifications were applied to the intake system in order to generate the required tumble flow. The modified systems were then tested on a steady flow rig. The results showed that the method of shrouding the lower part of the intake valves could produce rather higher tumble flow with less loss of the flow coefficient than other methods. The optimised intake system was then consisted of two shroud plates on the intake valves with 120° angles and 10mm height. The in-cylinder flow of the optimised intake system was investigated by PIV measurements.
Technical Paper

Numerical Study of Effects of Fuel Injection Timings on CAI/HCCI Combustion in a Four-Stroke GDI Engine

2005-04-11
2005-01-0144
The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI) was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings, in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes.
Technical Paper

Numerical Simulation of the Gasoline Spray with an Outward-Opening Piezoelectric Injector: A Comparative Study of Different Breakup Models

2018-04-03
2018-01-0272
The outward-opening piezoelectric injector can achieve stable fuel/air mixture distribution and multiple injections in a single cycle, having attracted great attentions in direct injection gasoline engines. In order to realise accurate predictions of the gasoline spray with the outward-opening piezoelectric injector, the computational fluid dynamic (CFD) simulations of the gasoline spray with different droplet breakup models were performed in the commercial CFD software STAR-CD and validated by the corresponding measurements. The injection pressure was fixed at 180 bar, while two different backpressures (1 and 10 bar) were used to evaluate the robustness of the breakup models. The effects of the mesh quality, simulation timestep, breakup model parameters were investigated to clarify the overall performance of different breakup model in modeling the gasoline sprays.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Journal Article

Numerical Analysis of a Downsized 2-Stroke Uniflow Engine

2014-10-01
2014-01-9051
In order to optimize the 2-stroke uniflow engine performance on vehicle applications, numerical analysis has been introduced, 3D CFD model has been built for the optimization of intake charge organization. The scavenging process was investigated and the intake port design details were improved. Then the output data from 3D CFD calculation were applied to a 1D engine model to process the analysis on engine performance. The boost system optimization of the engine has been carried out also. Furthermore, a vehicle model was also set up to investigate the engine in-vehicle performance.
Technical Paper

Lubricant Induced Pre-Ignition in an Optical SI Engine

2014-04-01
2014-01-1222
This work was concerned with study of lubricant introduced directly into the combustion chamber and its effect on pre-ignition and combustion in an optically accessed single-cylinder spark ignition engine. The research engine had been designed to incorporate full bore overhead optical access capable of withstanding peak in-cylinder pressures of up to 150bar. An experiment was designed where a fully formulated synthetic lubricant was deliberately introduced through a specially modified direct fuel injector to target the exhaust area of the bore. Optical imaging was performed via natural light emission, with the events recorded at 6000 frames per second. Two port injected fuels were evaluated including a baseline commercial grade gasoline and low octane gasoline/n-heptane blend. The images revealed the location of deflagration sites consistently initiating from the lubricant itself.
Book

Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines

2012-07-30
The increasing concern about CO2 emissions and energy prices has led to new CO2 emission and fuel economy legislation being introduced in world regions served by the automotive industry. In response, automotive manufacturers and Tier-1 suppliers are developing a new generation of internal combustion (IC) engines with ultra-low emissions and high fuel efficiency. To further this development, a better understanding is needed of the combustion and pollutant formation processes in IC engines. As efficiency and emission abatement processes have reached points of diminishing returns, there is more of a need to make measurements inside the combustion chamber, where the combustion and pollutant formation processes take place. However, there is currently no good overview of how to make these measurements.
Technical Paper

Investigation on Knock Resistance with Turbulent Jet Ignition at Different Engine Load in an Optical Engine

2019-12-19
2019-01-2151
This research was focused on the effect of pre-chamber ignition and compared the knock limit of normal spark ignition in the main chamber and pre-chamber jet ignition combustion in a spark ignition gasoline engine. Experiments were conducted in a single-cylinder engine with optical access. Engine was operated with stoichiometric air/fuel mixtures at 1200 rev/min and different inlet pressures of 1, 1.2, and 1.4 bar. No auxiliary fuel was injected into the pre-chamber when jet-ignition mode was used. The results show that significant knock limit extension can be realized with use of a pre-chamber ignition unit. The main differences in engine performance, heat release and combustion, knock resistance and flame propagation were compared between the pre-chamber ignition and conventional spark ignition in the main chamber by in-cylinder pressure measurements and high-speed flame chemiluminescence imaging.
Technical Paper

Investigation of advanced valve timing strategies for efficient spark ignition ethanol operation

2018-09-03
2018-36-0147
Biofuels for internal combustion engines have been explored worldwide to reduce fossil fuel usage and mitigate greenhouse gas emissions. Additionally, increased spark ignition (SI) engine part load efficiency has been demanded by recent emission legislation for the same purposes. Considering theses aspects, this study investigates the use of non-conventional valve timing strategies in a 0.35 L four valve single cylinder test engine operating with anhydrous ethanol. The engine was equipped with a fully variable valve train system enabling independent valve timing and lift control. Conventional spark ignition operation with throttle load control (tSI) was tested as baseline. A second valve strategy using dethrottling via early intake valve closure (EIVC) was tested to access the possible pumping loss reduction. Two other strategies, negative valve overlap (NVO) and exhaust rebreathing (ER), were investigated as hot residual gas trapping strategies using EIVC as dethrottling technique.
Technical Paper

Investigation of Valve Timings on Lean Boost CAI Operation in a Two-stroke Poppet Valve DI Engine

2015-09-01
2015-01-1794
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. In order to take advantage of the inherent ability to retain a large and varied amount of residual at part-load condition and its potential to achieve extreme engine downsizing of a poppet valve engine running in the 2-stroke cycle, a single cylinder 4-valves camless direct injection gasoline engine has been developed and employed to investigate the CAI combustion process in the 2-stroke cycle mode. The CAI combustion is initiated by trapped residual gases from the adjustable scavenging process enabled by the variable intake and exhaust valve timings. In addition, the boosted intake air is used to provide the in-cylinder air/fuel mixture for maximum combustion efficiency.
Technical Paper

Investigation of EGR and Miller Cycle for NOx Emissions and Exhaust Temperature Control of a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2227
In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
Technical Paper

Investigation of CAI Combustion with Positive Valve Overlap and Enlargement of CAI Operating Range

2009-04-20
2009-01-1104
Controlled Auto-Ignition (CAI) combustion was investigated in a Ricardo E6 single cylinder, four-stroke gasoline engine. CAI combustion was achieved by employing positive valve overlap in combination with variable compression ratios and intake air temperatures. The combustion characteristics and emissions were studied in order to understand the major advantages and drawbacks of CAI combustion with positive valve overlap. The enlargement of the CAI operational region was obtained by boosting intake air and adding external EGR. The lean-boosted operation elevated the range of CAI combustion to the higher load region, whilst the use of external EGR allowed the engine to operate with CAI combustion in the region between boosted and N/A CAI operational ranges. The results were analyzed to investigate combustion characteristics, performance and emissions of the boosted CAI operations.
Technical Paper

Investigation into the Effect of Injection Timing on Stoichiometric and Lean CAI Operations in a 4-Stroke GDI Engine

2006-04-03
2006-01-0417
The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI) can be achieved by the negative valve overlap method in conjunction with direct injection in a four-stroke gasoline engine. A multi-cycle 3D engine simulation program has been developed and applied to study the effect of injection timing on CAI operations with lean and stoichiometric mixtures. The combustion models used in the present study are based on the modified Shell auto-ignition model and the characteristic-time combustion model. A liquid sheet breakup spray model was used for the droplet breakup processes. Based on the parametric studies on injection timing and equivalence ratio, the major difference between stoichiometric and lean-burn CAI operations is due to the fact that fuel injections take place during the negative valve overlap period.
Technical Paper

Investigation into Controlled Auto-Ignition Combustion in a GDI Engine with Single and Split Fuel Injections

2007-04-16
2007-01-0211
A multi-cycle three-dimensional CFD engine simulation programme has been developed and applied to analyze the Controlled autoignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), in a direct injection gasoline engine. CAI operation was achieved through the negative valve overlap method by means of a set of low lift camshafts. The effect of single injection timing on combustion phasing and underlying physical and chemical processes involved was examined through a series of analytical studies using the multi-cycle 3D engine simulation programme. The analyses showed that early injection into the trapped burned gases of a lean-burn mixture during the negative valve overlap period had a large effect on combustion phasing, due to localized heat release and the production of chemically reactive species. As the injection was retarded to the intake stroke, the charge cooling effect tended to slow down the autoignition process.
Technical Paper

Integrated CFD-Experimental Methodology for the Study of a Dual Fuel Heavy Duty Diesel Engine

2019-09-09
2019-24-0093
This paper deals with the experimental and numerical investigation of a 2.0 litre single cylinder Heavy Duty Diesel Engine fuelled by natural gas and diesel oil in Dual Fuel mode. Due to the gaseous nature of the main fuel and to the high compression ratio of the diesel engine, reduced emissions can be obtained. An experimental study has been carried out at three different load level (25%, 50% and 75% of full engine load). Basing on experimental data, the authors recreated a 45° mesh sector of the engine cylinder and performed CFD simulations for the cases at 50% and 75% load levels. Numerical simulations were carried out on the 3D code Ansys FORTE. The aim of this work is to study combustion phenomena and, in particular, the interaction between natural gas and diesel oil, respectively represented by methane and n-dodecane. A reduced kinetic scheme for methane auto-ignition was implemented while for n-dodecane two set of reactions were utilised.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
X